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Abstract 

 
The distance vector-hop (DV-Hop) is one of the emblematic algorithms that use node 
connectivity for locating, which often accompanies by a large positioning error. To reduce 
positioning error, the bio-inspired algorithm and weight optimization model are introduced to 
address positioning. Most scholars argue that the weight value decreases as the hop counts 
increases. However, this point of view ignores the intrinsic relationship between the error and 
weight. To address this issue, this paper constructs the relationship model between error and 
hop counts based on actual communication characteristics of sensor nodes in wireless sensor 
network. Additionally, we prove that the error converges to 1/6CR when the hop count 
increase and tendency to infinity. Finally, this paper presents a modified error-oriented weight 
positioning model, and implements it with genetic algorithm. The experimental results 
demonstrate excellent robustness and error removal. 
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1. Introduction 

Internet of things and big data technologies have made great contributions to promoting 
social development, such as security detection [1, 2], autonomous vehicles [3], risk assessment 
[4], resources or flow shop scheduling [5-7], and so on [8-11]. Among them, location 
information plays an important role in biological and industrial production safety [12]. For 
instance, in the battle against the novel coronavirus disease [13, 14], big data and IoT is used to 
monitor and predict the spread whereabouts of potential coronavirus cases. And it has played 
unparalleled roles such the monitoring the flow of suspected people, the distribution of 
medical personnel, identity authentication. It is worth emphasizing that location information is 
one of the most indispensable pieces of information during this fight against the epidemic. 

Presently, the methods of obtaining location information mainly contain satellite [15] and 
wireless communication positioning [16]. When under special circumstances such as coal 
mines and virgin forests, the satellite positioning method loses its positioning advantages and 
even fails. In this condition, location acquisition mainly depends on wireless communication 
positioning, including range-free and range-based positioning. Because of economic cost 
constraints, the range-free positioning method has received more attention. And DV-Hop [17] 
is a representative algorithm that depends on the location of base station nodes and 
connectivity between these nodes. The positioning process is as follows: 

1st step: beacon nodes (BNs) flood the packs to the sensor network, other nodes (including 
the unknown (UNs) and beacon nodes) record the hop information and BNs’ location, then 
retransmission packs to network. When the connectivity detection is completed, each UN 
retains only the minimum hop counts between it and BN.  

2nd step: calculated the per hop distance ( _ iPerhop dis ) according to the location and the 
minimum hop counts between the iBN  and jBN . 
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                                                  (1) 

where, iBN  and jBN  refer to the locations of the beacon nodes ( iBN  and jBN ), ,i jhop  refer 
to the minimum hop count between iBN  and jBN . 

Then, the estimated distance ( ,i kdis ) between iBN  and kUN  is calculated as follows: 

, ,= _i k i i kdis Perhop dis hop⋅                                                        (2) 

3rd step: location calculated. In this process, the location of kUN  can be obtained by 
geometric solution or intelligent optimization algorithm. Here, we study the second solution. 
According to the estimated distance ( ,i kdis ), the location calculation model of kUN  is as 
follows: 

, ,
1
| | | |

n

i k i k i k
i

f BN UN dis
=

= − −∑                                                       (3) 

where n denotes the number of the iBN . 
To improve the positioning accuracy, scholars introduced weights to constrain the node 
kUN . The weight calculation model is proposed by Li [18], which is expressed as follows: 
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And the location calculation can express as follows: 
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This model believes that the greater the hop count, the smallest the weight. Nevertheless, 
this model ignores the intrinsic relationship between the error and weight, which resulting in a 
lack of analysis of the model's error convergence. To address this situation, this study analyzes 
the communication principles of sensor nodes, constructs an error model, and performs 
convergence analysis. According to the error convergence analysis, a modified error-oriented 
weight (MEOW) positioning model is proposed and we solve this model with genetic 
algorithm (GA) [19, 20]. In this paper, the main contributions are as follows: 1) The defects of 
the current weight model are revealed. 2) A modified error-oriented weight model is 
constructed; the accuracy of distance estimation has been greatly improved. 3) Extensive 
simulation experiments are executed to evaluate the performance of the weight model and the 
effectiveness of the weight model is verified by comparing the classical and the latest 
algorithms with the equivalent evaluation. 

The organization of this study is as follows. Section II introduces the current research 
status of the weight positioning model and its limitations; Section III proposes a modified 
error-oriented weight positioning model and analyzes the model convergence. Section IV 
solves this MEOW positioning model with GA (named MEOWGA-DVHop), and simulates 
and analyzes it. Finally, the conclusions are drawn in section V. 

2. Related work 

2.1 Current research status 
For this weight model, scholars have adopted different improvement strategies, which contain 
deterministic [21-24] and non-deterministic [25-27] strategy improvement. In this paper, we 
focus on non-deterministic strategies based on optimization algorithms, because the 
optimization algorithms [28-31] have been proven to have excellent results in various fields 
[32-35]. Mehrabi [36] used different evolutionary algorithms to optimize the positioning 
model during the position solution process. Wang [37] revealed the error distribution 
characteristics of unknown nodes and proposed a multi-objective positioning model based on 
Gaussian disturbance. Shi [38] introduced a path matching strategy in the model to find the 
shortest path between beacon nodes, and solved it with PSO. Sharma [39] presented the 
concept of co-planarity to reduce location errors caused by the anchor nodes which are 
coplanar, and used the GA solved the weight model. Similarly, Cai [40] presented the fast 
triangle flip bat algorithm with curve and rank transformation strategy to optimize DV-Hop 
positioning model. For the problem of uneven distribution of nodes due to the battery life of 
the nodes, Kanwar [41] presented to localize the newly deployed nodes and use GA to solve 
the model. Similarity, Prashar [42] presented the error correction metric strategy and PSO to 
improve DV-Hop localization precision. Shi [43] enhanced the localization accuracy depends 
on two strategies, which are an N-gram model and a weighed Levenberg-Marquardt method. 
Han [44] introduced the individual learning strategy of PSO into the DE algorithm to improve 
the global search ability for unknown nodes. Cai [45] constructed a weight model based on 
error calculation, but the conditions for the establishment of the model are ideal and the model 
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still has deviations in practical applications.  
However, what is noteworthy is that during the process of improving the DV-Hop 

algorithm, scholars have paid more attention to the improvement of the algorithm search 
strategy, while ignoring the improvement of the weight model. One problem caused by this 
phenomenon is that the rationality of the weight model as in Eq. (4) has not been verified, and 
the theoretical basis of the model has not been studied. To address this issue, this paper 
explored the following research, including the construction of the weight model and 
calculation of theoretical error. 

2.2 Limitation analysis 
A traditional view is that when the number of hops is n, the maximum distance (which is 
named up bound, UB) that a node can detect is n CR⋅  ( CR  denotes communication radius), 
such as Fig. 1. Fig. 1 is a schematic diagram of the detectable range when hop count is 3. 
Where 1 2andTN TN  denote the transmit nodes; the dotted circle indicates the communication 
coverage of the corresponding transmit nodes ( iTN ); line segment ( l ) represents the distance 
between BN  and UN . From the Fig. 1, the distance between BN  and UN  is 3CR . 
Theoretically, only two transmit nodes are needed for BN  and UN  communication, which 
requires two transmit nodes to be in the same location as 1 2andTN TN . However, according to 
the relevant knowledge of probability theory, we conduct the following analysis. 

Assumption: In the detection area, event A  indicates that a node a coincides with node 
1TN , whose probability is expressed as ( )P A ; and event B  indicates that a node a coincides 

with node 2TN , whose probability is expressed as ( )P B . And events A  and B  are 
independent of each other. Therefore, we have ( ) = ( ) = 0P A P B  (Because in the plane, the 
value of probability that two points coincide is 0.). Thus, the probability of simultaneous 
occurrence of event A  and B  can be expressed as ( ) = ( ) ( ) = 0P AB P A P B . That is, in the actual 
communication process, the ideal communication situation shown in Fig. 1 does not exist. 

 

BN

CR

1TN 2TN UN

CR CR
l

 
Fig. 1. Schematic diagram of detectable range when the number of hops is 3. 

 
Therefore, when the hop count is n, the maximum detectable distance of node is smaller 

than n CR⋅ . And it means the traditional model has defects during the detection distance 
analysis process, so that the constructed weight model cannot reflect the actual communication 
characteristics of the node. To tackle this defect, and to construct a weight model more in line 
with the characteristics of actual communication, this work conducts the following research. 
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3. Modified estimated distance calculation model 
According section 2.2, we can know that when the value of hop count is n in the actual 
communication process, the maximum detection distance (up bound) is less than n CR⋅ . To 
address this issue, this section models the estimated distance and error of the nodes based on 
the actual communication characteristics. For convenience, the following variables are 
introduced: ,n na b  and nϕ . Where, na  denotes the average up bound (AUB), nb  indicates the 
theoretical estimation distance, and nϕ  denotes the error when the value of hop is n. (Remark: 
Because the upper boundary is less than n CR⋅  when the value of hop is n, the concept of AUB 
is introduced when constructing the model, which is considered to be the maximum upper 
boundary obtained by probability.).  

3.1 Model analysis when the hop count is 1 
When the hop count is 1, the distribution of nodes is shown in Fig. 2. Where, kr  indicates the 
distance between the kUN  and BN , and dr  denotes the variable ( r∆ ) between the node kUN  
and 1kUN − . From Fig. 2, we can know that when the hop count is 1, the communication 
between nodes does not require retransmission; therefore, the value of UB is CR. 
Correspondingly, when the number of nodes k tends to ∞, average per hop distance of beacon 
node can be expressed as the average of the distance sum of nodes kUN  to BN , that is 

1mean( )kr
∞∑ . And the calculation is expressed as follows: 

2
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2
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= =∫
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                                               (6) 

where, _Per dis  indicates the theoretical average distance per hop. 
 

kUN

BN
CR

1hop =

dr

1kUN −

1kr −

kr

 
Fig. 2. Analysis of theoretical estimated distance. 

 
According to the value of equation (1) and (6), we can know that the value of  _ iPerhop dis  

is distributed on both sides of 2
3 CR . Therefore, we regard _Per dis  as the theoretical 

estimation distance ( 1b ) when the hop count 1. The corresponding error distribution 
characteristics can be expressed as Fig. 3. 
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Thus, we have 2
31 1= ,a CR b CR= , and the error 1ϕ  is calculated as follows: 
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Fig. 3. Analysis of theoretical estimated distance. 

3.2 Estimated distance analysis when the hop count is n 
When the hop count is 2, a relay node is needed for mutual communication between nodes. 
Due to cost constraints, the actual deployment number of sensor nodes is limited, which will 
cause the loss of communication distance as shown in Fig. 4. From the Fig. 4, the distance 
between the node TN  and the radius is γ  (where, γ  indicates the communication distance 
loss), which bring the communication distance loss is γ  when forwarding by this node. And it 
reveals when the value of hop is n, the actual communication distance is less than n CR⋅ . 
 

BN UNTN

CR
CR

γ

 
Fig. 4. Communication distance loss analysis when the number of hops is 2. 

 
Against this phenomenon, we propose the distance estimated model shown in Fig. 5. 

Given: 2
21 1= ,a CR b CR= ; therefore, the 2a  is calculated as 1b CR+ . It introduces the concept 

of the average upper boundary (AUB), and the distance loss generated by each node is 
statistically processed. Therefore, the maximum detection distance is approximated as 1b CR+  
when the hop count is 2. 
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Accordingly, the 2b  is calculated as follows (it denotes the average distance between node 
BN  and other sensor nodes in interval 1 2[ , ]a a ). 

 
52 3
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= =
∫ ∫
∫ ∫

                                                  (8) 

 
Further, when the value of hop is 3 (n), the distance estimated model is shown in Fig. 6. 
Similarly, 3a  can be calculated as 2b CR+ , and the na  can be expressed as: 
 

1=n na b CR− +                                                                      (9) 
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Fig. 5. Distance estimated model when the number of hops is 2. 
 
 

Accordingly, the nb  can be expressed as: 
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Fig. 6. Estimated distance model when the number of hops is 3(n). 
 

3.3 Error analysis with the hop increases 
According to the Eq. (7), we can know when the value of hop is n; the error can be denoted as 
a sectional integral on interval 1[ , ]n na a

− , where the dividing line is nb . And the error analysis is 
shown in Fig. 7. 
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Fig. 7. Error analyze when the value of hop is n. 
 

Correspondingly, the error calculation can be expressed as: 
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Then, the error convergence is analyzed. According to the Eq. (9) and (10), we can know 
that the na  and nb  are recursive expressions. Thus, we explore the relationship between na  
and nb , and found when the hop count tendency to ∞, the convergence of n na b−  can be 
expressed as: 

12 2 1
1 13 3 3
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n n
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Combined with Eq. (9), we have: 
21
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1
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Therefore, when the n tends to ∞, the value of 1n nb b −−  converges to 2
3 CR , and the value of 

1n nb a −−  converges to 1
3 CR . Accordingly, the convergence of error nϕ  can be expressed as: 

3 2 2 3 32 2
1 13 3 1

62 2
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( ) ( )
lim lim n n n n n n

nn n
n n

b b a a a a
CR

a a
ϕ − −

→∞ →∞
−

− + + +
= =

−
                         (14) 

Therefore, in actual communication conditions, when the hop count increase and tendency 
to ∞,  the error nϕ  converges to 1

6 CR . 

4. Modified error-oriented weight model 

4.1 Construction of error model 
The weight is an important embodiment of the influence of beacon nodes on unknown nodes. 
According to the error analysis of the nth hop, this study improves the traditional weight model 
and proposes a modified error-oriented weight (MEOW) model. The Fig. 8 reflects the details 
of the error changes with the number of hops. Where, Fig. 8 (a) the reflects the change in error 
when the maximum hop count is 20, and (b) reflects the change trend of the error when the 
maximum hop count is 100. Apparently, as the number of hops increases, the error shows a 
downward trend of fluctuations, and it reveals the tradition weight model (which is Eq. (4)) is 
inaccurate. 
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(a)                                                               (b) 

Fig. 8. The graph of error. (a) the maximum value is 20, (b) the maximum value is 100. 
 

Considering the idea that the larger the weight, the smaller the error, we constructed the 
following weight model: 

,
,

1= , 1, 2, ... ,i k
i k

i nω
ϕ

=                                                       (15) 

where, ,i kω  represents the weight of node iBN  to node kUN , and ,i kϕ  denotes the theoretical 
error between the node iBN  to node kUN . 

And the fitness evaluation model is: 

, , ,
1

| | | |
n

i k i k i k i k
i
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Begin

End
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Table 2

Perform the step 1 and 2 of The 
DV-hop algorithm to obtain the 
minimum hops between nodes

Calculate the value of weight 
values according to Eq. (14) 

and (15)

Calculate the fitness values with 
Eq. (16) and sort the results

Select the healthy individuals as 
parental populations and combine it 

with children populations

Perform crossover and mutation 
operations within boundaries

End condition ?

Calculate and output the best 
positioning and errors

Y

N

 
Fig. 9. Flow chart of MEOWGA-DVHop. 

 

4.2 Solution of weight model 
This section uses GA to solve the weight model, and the process is shown in Fig. 9. The 
algorithm framework includes two parts: DV-Hop algorithm and genetic algorithm. The left 
shows the first two stages of DV-Hop algorithm, and the right shows the algorithm flow of 
genetic algorithm. 
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During this execution of the algorithm, to ensure the convergence of the algorithm, the 
crossover and mutation operations are performed with a certain probability. And the 
calculation of the error follows Eq. (18). 

5. Simulation tests 

5.1 Model construction rationality analysis 
To verify the rationality of the construction of the weight model, this section makes a 
statistical analysis of the estimated distance of the model, the simulation parameters are shown 
in Table 1 (Remark: The nodes follow the Uniform distribution in the detection area, and the 
nodes are regenerated each time they are tested independently.). 
 

Table 1. Simulation parameters 

Parameters Value 

Detection area 200m×200m 

Nodes (N) 300 

BNs (n) 20 

R (m) 25 

Independently runtime 100 
 
According to the step 1 and 2 of DV-Hop algorithms, record the minimum hops required 

for nodes to communicate with each other, and mark the actual distance between nodes when 
the hop count is 3. The results are shown in Fig. 10. In ideal conditions, when the number of 
hops is 3, the maximum detection distance is 75m. However, in the statistical results, the 
maximum detection distance is only 71m, which is less than the theoretical value of 75m. The 
resulting fitting function is expressed as follows:  

253.2( )
11.1( ) 0.56 e

x

f x
−

−
= ⋅                                                           (17) 

 
Fig. 10. Actual distance statistics of nodes when the hop count is 3. 

 

According to the Eq. (17), we know that the standard deviation interval is [42.1m, 64.3m] . 
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In contrast, the interval of detection distance in the ideal (traditional view) case is [50m, 75m]   
(where, the detection distance interval in ideal conditions is [( 1) , ]n CR n CR− ⋅ ⋅ ); the interval of 
detection distance in this work is [34.03m, 59.03m] . Apparently, the interval similarity in this 
work is 76.26%, the interval similarity in ideal conditions is 64.41%. It illustrates that the 
weight model (distance estimation model) constructed in this paper is obviously superior to 
the traditional weight model. 

5.2 Positioning error analysis 
This section mainly compares and analyzes the positioning errors of nodes to test the 
performance of the proposed model. The program is shown in Fig. 9, and the algorithm 
parameters are shown in Table 2. The test results are compared with DV-Hop, OCS-DVHop 
[26], TWPSO-DVHop [38] and TWGA-DVHop [39]. 
 

Table 2. Simulation parameters 

Parameters Value Parameters Value 

Network type C-shaped, O-shaped, X-shaped Population 20 

Area 100m×100m Variable dimension (v) 2M 

Nodes 100 (50-100) Cross probability 0.9 

BNs  20 (5-30) Mutation probability 1/v 

CR (m) 25 (15-40) Maximum iterations 500 

— — — — Independently runtime 30 
The calculation of node error can be expressed as follows: 

*

1

1 || || 100%
M

j j
j

APE UN UN
M R =

= − ⋅
⋅ ∑                                               (18) 

Where, APE  denotes the average positioning error, M  indicates the number of UNs , *
jUN  

indicates the estimated location, and jUN  denotes the actual location. 
Additionally, to test the robustness of this model, the test set used in this paper is the same 

as in literature 30, which contains three different network topologies, such as Fig. 11. 
 

 
(a)                                                 (b)                                                  (c)  

Fig. 11. Different complex networks topologies. (a): Type-C, (b): Type-O, (c): Type-X. 

5.3 Different CR test 
The Table 3 and Fig. 12 reveal the positioning error within the different CR. Apparently, 
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MEOWGA-DVHop shows outstanding positioning performance. When the value of CR is 15, 
the positioning errors respectively drop 101.5%, 70.22% and 37.8%. Especially, both 
TWGA-DVHop and MEOWGA-DVHop use the GA solve model, the difference is that 
TWGA-DVHop solves the traditional weight model, and MEOWGA-DVHop solves the 
modified error-oriented model. From the results, we can see that the error of 
MEOWGA-DVHop is much smaller than TWGA-DVHop, which reflects the advantages of 
the model. 

 
Table 3. The results under different CR 

CR 15  20  25  30  35  40  

Type-C 

DV-Hop 172.33 112.53 63.73 49.78 44.81 41.62 
OCS-DVHop 81.98 58.59 37.35 30.46 32.09 29.36 

TWPSO-DVHop 93.76 63.01 36.30 31.20 29.51 27.56 
TWGA-DVHop 50.99 39.28 31.32 31.17 30.96 31.64 

MEOWGA-DVHop 70.83 52.59 34.09 29.57 28.86 27.30 

Type-O 

DV-Hop 117.88 56.50 44.77 39.39 29.24 31.28 
OCS-DVHop 49.32 31.05 23.77 26.86 20.85 21.98 

TWPSO-DVHop 50.58 27.28 24.33 24.74 18.06 20.58 
TWGA-DVHop 44.14 31.77 28.15 30.39 25.70 28.37 

MEOWGA-DVHop 47.66 25.74 22.44 23.07 17.55 19.98 

Type-X 

DV-Hop 80.18 54.22 43.49 39.39 37.15 36.29 
OCS-DVHop 45.68 33.60 35.84 32.43 30.41 26.60 

TWPSO-DVHop 45.06 32.52 34.23 34.42 28.43 27.41 
TWGA-DVHop 41.57 36.93 38.60 37.58 35.50 34.59 

MEOWGA-DVHop 42.38 31.46 29.59 29.07 25.90 26.78 

 
(a)                                                 (b)                                                 (c)  

Fig. 12. The APE within different CR. (a): Type-C, (b): Type-O, (c): Type-X. 
 

Specially, we can see that there are some values of APE greater than 100% in Fig. 12. Why 
does this happen? As shown in Fig. 13, it belongs to Type-O networks. And there are two 
labeled nodes iBN  and kUN , and the distance between them is 70.4784m. When the CR is 
15m, the two nodes need four relay nodes (five hops) to communicate with each other in ideal 
conditions. However, in actual deployment, there may be no deployed nodes between them, 
like Fig. 13. At this time, we need additional relay nodes to maintain the connectivity of the 
two nodes. In Fig. 13, we need 15 such relay nodes (16 hops).  There is no doubt that this will 
bring a big error, according to the APE calculation equation (Eq. 18), there is a probability that 
the APE values are greater than 100. And with the CR increases, the value of APE decreases 
rapidly. 
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Fig. 13. The information transfer diagram of nodes iBN  and kUN  communicating with each other. 

5.4 Different CR test 
The Table 4 and Fig. 14 reveal the positioning error within the different nodes. In Type-C 
network, the error of MEOWGA-DVHop is larger than TWGA-DVHop, but smaller than 
other comparison algorithms. In Type-O and Type-X networks, the results show that the 
MEOWGA-DVHop always keeps the minimum localization error. 
 

Table 4. The results under different nodes 
Nodes 50  60  70  80  90  100  

Type-C 

DV-Hop 76.27  75.39  70.34  66.42  65.12  63.73  
OCS-DVHop 43.98  43.07  40.63  39.64  38.68  37.35  

TWPSO-DVHop 41.70  45.09  39.05  38.47  37.40  36.30  
TWGA-DVHop 32.35  35.11  33.38  33.15  30.68  31.32  

MEOWGA-DVHop 40.51 43.32 37.70 36.90 34.95 34.09 

Type-O 

DV-Hop 33.92  40.59  40.82  41.80  42.46  44.77  
OCS-DVHop 21.63  23.48  23.12  23.31  22.84  23.77  

TWPSO-DVHop 20.15  24.81  22.96  23.59  23.89  24.33  
TWGA-DVHop 22.38  27.36  25.40  26.20  26.50  28.15  

MEOWGA-DVHop 19.58 22.84 21.43 21.71 22.49 22.44 

Type-X 

DV-Hop 34.16  36.47  38.00  40.31  40.30  43.49  
OCS-DVHop 35.34  34.21  35.27  35.86  35.13  35.84  

TWPSO-DVHop 35.24  32.78  31.65  31.76  31.76  34.23  
TWGA-DVHop 34.85  32.58  34.44  35.89  36.56  38.60  

MEOWGA-DVHop 31.64 29.60 29.06 28.89 28.64 29.59 
 

 
(a)                                                 (b)                                                  (c)  

Fig. 14. The APE within different nodes. (a): Type-C, (b): Type-O, (c): Type-X. 
 

And from the Fig. 14, we can know that MEOWGA-DVHop is not sensitive to node 
density, and there are two reasons causing this situation: one is the model we built is more 
accurate than traditional models, such as Fig. 10; and another is GA has a strong global 
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convergence ability. 

5.5 Different anchor nodes test 
The Table 5 and Fig. 15 reveal the positioning error within the different number of BNs. In 
Type-C network, when the number of BNs is smaller than 20, the positional accuracy of 
MEOWGA-DVHop is superior to the TWGA-DVHop, and inferior to it when the number of 
BNs is larger than 20. And in other networks, the error of MEOWGA-DVHop is significantly 
superior to other algorithms, contains DV-hop, OCS-DVHop, TWPSO-DVHop and 
TWGA-DVHop algorithms. 
 

Table 5. The results under different BNs 
BNs 5  10  15  20  25  30  

Type-C 

DV-Hop 88.45  67.42  69.45  63.73  64.88  69.80  
OCS-DVHop 102.36  49.62  41.73  37.35  51.77  52.90  

TWPSO-DVHop 46.99  41.45  46.81  36.30  52.46  52.71  
TWGA-DVHop 116.76  43.28  37.54  31.32  33.21  31.30  

MEOWGA-DVHop 73.28 37.36 40.30 34.09 38.73 38.11 

Type-O 

DV-Hop 98.08  79.95  38.47  44.77  38.28  40.49  
OCS-DVHop 45.15  36.60  33.17  23.77  34.99  35.72  

TWPSO-DVHop 30.75  33.09  28.90  24.33  32.71  31.72  
TWGA-DVHop 76.28  51.68  30.23  28.15  26.26  25.00  

MEOWGA-DVHop 46.92 32.44 23.06 22.44 22.99 21.37 

Type-X 

DV-Hop 58.46  59.14  47.89  43.49  46.66  48.57  
OCS-DVHop 48.83  39.74  46.47  35.84  45.32  45.87  

TWPSO-DVHop 41.99  39.80  41.92  34.23  47.04  46.36  
TWGA-DVHop 60.86  42.36  38.83  38.60  36.91  33.12  

MEOWGA-DVHop 44.23 32.68 30.33 29.59 29.78 25.51 
 

 
(a)                                                (b)                                                 (c)  

Fig. 15. The APE within different BNs. (a): Type-C, (b): Type-O, (c): Type-X. 
 

5.6 Time complexity 
The time complexity of the comparison algorithm is shown in Table 6. Where, the MaxIt 
indicates the maximum iterations, NP denotes the population size. Because both 
TWGA-DVHop and MEOWGA-DVHop use GA to solve the model, the time complexity of 
them is identical. Similarly, the OCS-DVHop and TWPSO-DVHop has identical time 
complexity. And the time complexity of MEOWGA-DVHop is smaller than OCS-DVHop. 
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Table 6. Time complexity 
Algorithms time complexity 

OCS-DVHop  ( (N n) log )O MaxIt NP NP⋅ − ⋅  
TWPSO-DVHop  ( (N n) log )O MaxIt NP NP⋅ − ⋅  
TWGA-DVHop  ( log )O MaxIt NP NP⋅  

MEOWGA-DVHop  ( log )O MaxIt NP NP⋅  

6. Conclusions 
Aiming at the lack of convergence analysis among intelligent positioning algorithms in WSNs, 
this paper builds an intrinsic relationship model between error and hops based on the 
characteristics of sensor nodes in the actual communication process among the component 
systems. This model reveals that the theoretical value of error will converge to a constant 
( 1

6 CR ), when the hop counts tend to infinity (Remark: There are a certain number of sensor 
nodes in the detection area, and they are following the Uniform distribution.). Then, we 
present the modified error-oriented weight (MEOW) positioning model and solve it with GA. 
Specially, this paper considers the distance loss in the actual communication process, which 
makes the constructed distance estimation model more accurate. Such as Fig. 10, when the 
hop value is 3, the interval similarity between the estimated distance and the actual distance of 
the traditional weight model is only 65%. The modified model proposed in this paper can be 
increased to 79%, this makes it more advantageous in the positioning process. And the 
simulation results confirm that the MEOWGA-DVHop is significantly superior to other 
algorithms. 

In addition, there are some defects in MEOWGA-DVHop proposed in this paper from the 
test results of the Type-C network. And our next step is to explore the possible causes of this 
phenomenon and continue to optimize the positioning model. And it will also be included in 
subsequent research that the deployment in real-world applications for the developed model. 
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